Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
biorxiv; 2023.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2023.01.06.522977

RESUMO

SARS-CoV-2 virus spike (S) protein is an envelope protein responsible for binding to the ACE2 receptor, driving subsequent entry into host cells. The existence of multiple disulfide bonds in the S protein makes it potentially susceptible to reductive cleavage. Using a tri-part split luciferase-based binding assay, we evaluated the impacts of chemical reduction on S proteins from different virus variants and found that those from the Omicron family are highly vulnerable to reduction. Through manipulation of different Omicron mutations, we found that alterations in the receptor binding module (RBM) are the major determinants of this vulnerability. Specifically we discovered that Omicron mutations facilitate the cleavage of C480-C488 and C379-C432 disulfides, which consequently impairs binding activity and protein stability. The vulnerability of Omicron S proteins suggests a mechanism that can be harnessed to treat specific SARS-CoV-2 strains.


Assuntos
Síndrome Respiratória Aguda Grave
2.
Zhongguo Bingyuan Shengwuxue Zazhi / Journal of Pathogen Biology ; 15(5):575-579, 2020.
Artigo em Chinês | CAB Abstracts | ID: covidwho-1994549

RESUMO

Objectives: To investigate the epidemiological characteristics of pathogens and changes in inflammatory factors in patients with sepsis in the Xinjiang area and to analyze factors influencing the prognosis for patients with sepsis.

3.
researchsquare; 2021.
Preprint em Inglês | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1105720.v1

RESUMO

The COVID-19 pandemic triggered the development of numerous diagnostic tools to monitor infection and to determine immune response. Although assays to measure binding antibodies against SARS-CoV-2 are widely available, more specific tests measuring neutralization activities of antibodies are immediately needed to quantify the extent and duration of protection that results from infection or vaccination. We previously developed a ‘Serological Assay based on a Tri-part split-NanoLuc® (SATiN)’ to detect antibodies that bind to the spike (S) protein of SARS-CoV-2. Herein, we expand on our previous work and describe a reconfigured version of the SATiN assay that can measure neutralization activity of antibodies directly from convalescent or vaccinated sera. The sensitivity is comparable to cell-based pseudovirus neutralization assays but with significantly shorter preparation and assay run time. As the assay is modular, we further demonstrate that Neutralization SATiN (Neu-SATiN) enables rapid assessment of the effectiveness of vaccines and level of protection against existing SARS-CoV-2 variants of concern and can therefore be readily adapted for emerging variants.


Assuntos
COVID-19
4.
Cell Rep ; 37(4): 109882, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: covidwho-1525720

RESUMO

Remdesivir (RDV), a nucleotide analog with broad-spectrum features, has exhibited effectiveness in COVID-19 treatment. However, the precise working mechanism of RDV when targeting the viral RNA-dependent RNA polymerase (RdRP) has not been fully elucidated. Here, we solve a 3.0-Å structure of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RdRP elongation complex (EC) and assess RDV intervention in polymerase elongation phase. Although RDV could induce an "i+3" delayed termination in meta-stable complexes, only pausing and subsequent elongation are observed in the EC. A comparative investigation using an enterovirus RdRP further confirms similar delayed intervention and demonstrates that steric hindrance of the RDV-characteristic 1'-cyano at the -4 position is responsible for the "i+3" intervention, although two representative Flaviviridae RdRPs do not exhibit similar behavior. A comparison of representative viral RdRP catalytic complex structures indicates that the product RNA backbone encounters highly conserved structural elements, highlighting the broad-spectrum intervention potential of 1'-modified nucleotide analogs in anti-RNA virus drug development.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Antivirais/farmacologia , RNA Polimerase Dependente de RNA/efeitos dos fármacos , SARS-CoV-2/efeitos dos fármacos , Proteínas Virais/efeitos dos fármacos , Monofosfato de Adenosina/farmacologia , Alanina/farmacologia , Microscopia Crioeletrônica , Humanos , RNA Viral/química , RNA Viral/efeitos dos fármacos , RNA Polimerase Dependente de RNA/química , SARS-CoV-2/química , Proteínas Virais/química , Replicação Viral/efeitos dos fármacos , Tratamento Farmacológico da COVID-19
5.
researchsquare; 2020.
Preprint em Inglês | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-115221.v1

RESUMO

To meet the urgent demand for better diagnostic tools to combat the ongoing COVID-19 pandemic, we developed a homogeneous immunoassay to detect IgG antibodies against SARS-CoV-2. This assay is based on a tri-part Nanoluciferase (tNLuc) approach, in which the spike protein of SARS-CoV-2 and protein G, fused respectively to two different tNLuc tags, are used as antibody probes. Target engagement of the probes allows reconstitution of a functional luciferase in the presence of the third tNLuc component. The assay is performed directly in liquid phase of patient sera and enables rapid, quantitative and low-cost detection. We show that tNLuc maintains a similar sensitivity to ELISA, while its readouts are highly consistent with various neutralizing antibody assays. This proof-of-principle study suggests potential applications in diagnostics and disease and vaccination management. 


Assuntos
COVID-19
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA